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The present report presents a theoretical e.na~sis of en initialJy
flat, =ctangubr plate with large deflections -r either normal.
pressure or cotiined nonml pressure and side thrust. As small
deflections of a flat plate are ~verned by a sin@e linear equation,
lerge deflections introduce nonlinear terms into the conditions of
equilibrium and are governed by 2 fourth-order,,se,mnd-degree, partisl
clifferentid. equations. These so-called Von E3rman equations are
studied in the present report by use of the finite-clifference approxi-

.—

mations. The difference equations are solved ‘bytwo methods, rwmly,
the method of successive approximations end the relaxation method.
Neither of these methods is mw, but their application to nonlinesr
problems requires m3w techniques. --

The pro%lem of a unHorml.y loaded square plate with “boundary
conditions which approximate the riveted sheet-stringer panels is
solved by the m thod of succeqsive approximations. The theoretical
center deflections show good agreemnt with ths recent experimental
results obtained at the California Institute of Technology when the
deflections are of the order of the plati thickness. This agreemnt
perhaps sgsts the r- in which these Von Xl&e$L equations are
to be applied.

.

Other problems of t?xlnplates with lerge deflections are discussed
from the point of view of an aeronautical engineer. Ths %oundary
conditions which approximate the various cases are formulatids W tg.e._ ._
=thods for solving these problems sre outlined.

SMce the msthod presentid in the present report is general, it
may be applied to solve bending and coti=d bendinG and buckling
problems with practically any boundary conditions, and the results may
be obtained to ~ degre~ of accuracy required. l?urthermo.~~ the sam
mthod may be applied to solve the membrane theory of the plate which
applies when the deflection is very lar~ in comparison with the
thiclmess of the plate.
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IWIRODUCTION

The classicsl theory of the bending of a thin elastic plate expresses
the relation between the tremwerse defleotion of the middle surface of
the plate w end the lateral loading of intensi~ p by the equation

D#w=p

where D =
~3

is the flexural rigidity of the plata. It is
M(1 - U2)

known that the theory is restricted in application, for on the one hand
its basic assm@ions can be questioned umless the ~late is thin, and
on the other hsnd it neglect% an effect which must be appreciable
when w has values comparable with the thlckness. This is the msmbrane
effect of curvature, whereby tension or compression in the middle
surface tegds to oppose or to re=orce p. The effect is negligible
when w is very small, provided no stresses act initially in the plane
of the middle surface; but even so, it oyerates when w is -
because si&etching the middle surface is a necessary consequence of the
transverse deflection. When the deflection gets lerger and kger,
the menibraneeffect becoms more emd more prominent until for very lsrge
values of w the rmibrane effect is predominant whezwas ths bending
stiffneas is comparatively negligible.

Small transverse displacements of a flat elastic plate sre governed
by a single limsr equation but large Usplacemmts entail stretching
of the tiddle stiace and consequent tensfm wmchy fiteract@ ~th
the curvatures, introduce nonlhesr terms into the conditions of
equilibrium and so make those equations no longer independent.

The large-cleflection theory of flat plates is given by A. F5ppl
(reference”1), smd the second-order terms were formulated by Theodore
von K&m& in 1910 (reference 2). The smkmded (k&-clef ~ctionl
equations ham been solved, however, in only a fm o-es (x’sferences 3
to 19) and then with considerable labor.

Essentially thsre are three problems concerning flat plates with
large deflections. They are:

1. The bending problems, when the fI.atplates ae subJected to
lateral loading perpendicuMr to the plane of the plates, but no
side thrust is applied in the plane of the plates

2. The %uc?khg problems, when the plates are subJetted”to side
thrusts in the plans of the plates but are not loaded laterally

3. The coribimedbending and lnzc~ing
me subjected to both lateral losdfng and

problems, when
Si+ thrusts

the platis

.

—

m

*

—
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In the case of rmtal airpl.amsj in which weight is of prq
importance, the mtal sheets used must le thin EM. the deflectLone of
the plates are usually large in comparison with their thickness. in
‘or&m to obtain the design fozmmlas or charts for stressing suoh
plates, the Mge -clefI.ectiontheory must be used.

The bending problem is important in the desi~ of seaplanes.
Seaplanes are subjetted to a severe 5mpact during lemdlng emd tske-
off, especi* on rough water. The 5mpact must be withstood first
by the bottom plating and then by a system of tiansverse and longi-

—

tud.inal.nmibers to which the both plating Is attached, before it is
+3?SXlsldttedto the body Of the StrUC~ . The bottom should be strong
enough not to washboard permanently under -se @act pressures.
Such washboardiug is undesirable because of the ticreased friction
%etween the float bottom and.the water and also %ecause of the increased
esrodynamic drag in flight. .

The bottom plating of seaplenes is, as a rule, subdivided into
a large nuniberof ne~ly rectangular areas by the tisnsverse @
longitudinal supporting ribs. Each of these areas ‘behavessu%stantislly
like a rectangdar plate under normal pressure. Bend5ng of reotan@ler
flat plates may therefore M used.to study the washhoarding of seaplane
bottoms, provi~d the bcmudary cotitions at the edges cam be formulated
Just as in ths seaplane.

The buclding problem is impartmt in titermindmg the strength
of sheet-stringer panels in end compression. The use of stiffened
sheet to carry compressive loads is increasin@y populsr in box bqsms
for airplane wings and in other types of semi monocoque construction.
Inasmuch as the sheets used as aircraft structural elements tiregenerally

— -—

quite thin, the %uckling stresses of these sheet elemnts are necessarily
low. The dssi~r is therafore confronted with the problem of using
sheet metal in the buckled or wave state sW. of determining the stress
distribution and allowable stresses in such bucltladplates.

,

The combined bendhg sd bucld.ingproblem has become a problem of
importance with the increasing use of wings of the stressed-skin type
snd the pressurized fuselage construction for hi@-eLtitude flight.
During fld~t the wing is sul$ected to a pressure difference between
the two sides whiah produces the lift. The normel pressure acts
directly on the sheet covering and is then tistiibuted to ribs and
SIXWS. At the same t- the sheet panels ae also sub~ected to a side
thrust due to bending of the wing. In an airplame of pressurized
fuselage cmst~ction exLattempt is mdJ3 to keep the pressure inside
the cabin at a com~ortablg level for the passengers, regardless of the
altitude of the airplsme. Thus, there is a pressure differential across
the fuselage skin with an internal pressure higher thsm that outside..
The fuselage skin is usually sultivided =ta a num%er of recta.n&&m
curved panel= by longitudinal stringers and rings. These panels are
subJected to the yressure difference md side thrust resulting from

.
“ lending of the fuselage. As pointed.out by Niles and Newell (reference 20)

.
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the strength of curved sheet-stringerpemels
mtely from the flat sheet-stiin@r panels.
essentially that of deteminlng the strength
lateral loading and side thrust.

NACA TN No. 1425

can be determined approxi-
The problem is then
of flat plates under corriblned

Levy (referenoe 19) has shown that the effeotive width of a square
plate with simply supportexiedges decreases with the +dltion of lateral

pressure and that the reduction is a~reoiable for =4> 2.25. Therefore,
~4

a panel is unsafe if its design is based upon the side-thrust considerations
only, and the study of combined loading is of great significance.

A great number of authors have studied the bucld.ingproblems, and
considerable experimmtal work has been carried out. As a result,
desigu formulas are available and seem to be accurate for most practical.
purposes. The bending problems, however, have been studied by only a
few investigators, and test results (references 21 to 23) axe far lmo
scarce to Justtiy my conoluqions. The combined bending and buckling
problem has been studied in only O= case (mfemn* 19), and even in
this instance the resuits em incomplete.

Among the solutions of the large-deflectionproblems of rectsmgukr
plates under berdlng or combined bending and compression, Levy 1s solutions
are the O* ones of a theoretically exact titure. His solutions sxe,
however, limited to a few boundary conditions end the nunwrical results
can be obtained only titer great labor.

The purpose of the present investigation is to develop a simple
and yet sufficiently accurati rmthod for the solution of the bending and
the conibinedbending and bucld.ingproblems for engineering purposes,
and this is a@omplished by means of the fimite-differerme approximations.

Solving tlm partial clifferential equations by ftnite-difference
equations has been accomplished previously. Solting the resulting
difference equations, however, is still a problem. In the case of
linesr cliffererme equations, solutions by successive approximation
ere always convergent aud the work is only tedious. Besides, Southwel.11s
relaxation method may be applied wtthout too much trouble. But, in
order to solve the nonlineer clifferenoe equations, the suoceesive-
approximation msthod cannot always be relied on because it does not
always give a convergent solution. The relaxation method, sinoe it is
nothing but intelligent guessing, can be applied ti only a few cases
snd then with ~eat ~fictities (reference 16).

A study of the finite-difference expressions of the lsrge-cleflection
theory reveals that a technique cen be developed by mans of which the
system of non15meE& difference equations can he solved with rapid.
convergence by successive approximation by using Crout1s method of
solving a system of linear simultaneous equations (reference 21+). I!y
way of ULustra.tion, a squsre plate under uniform normal-pressure with
lound.aryconditions approximating the riveimd sheet-stringerpanel
is st~~ed by WS mmod. Nondimensional deflections and stresses are ‘

.

,

.“

.

.

.

G
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given under various normal pressures. The results m consistent with
Levy *s approximate numerical solution for ideal.,simple supported plates
(reference 19) and Way’s approximate solution for ideal clamped ed~s
(referenoe 15), and the oenter deflections cheek closely with tit test

results by Head * Sechler (reference 23) for the r&.tio pa4/Eh as
4 4 ~~r than ~“

largeas 120 ● The deviation for tie ratio pa ~
is probably due to the approximations employed.~ the derivation of
the basic differential equation.

The
problems
boundary
pressure

The

procedure is quite ~neralj It may be applied to solve the
of rectaguler plates of any length-width ratio with various
conditions under either _ pressure or Com*a normal
and side thrust.

present i~vestigation was originally oarried out under the
direction-of Frofessor J~seph S. Neweli at the Daniel Guggenheim
Aeronautical Ia%omatoqy of the Massachusetts Institute of Teohnolo&y
and was completed at Brown University, under the sponsorship and with
the financial support of the National Adviso~ Committee for Aeronautics,
where the author was participating in the yrogram for Advanced.Instruction
and Research in Mechanics. The author was particularly fortunate to
receive frequent advice while working on this problem from Professor
Richard Ton Mises of Harvafi University. The author is grateful to both
Professor Newell and Professor von Mises for their many valua%le
suggestions. ——

SYMBms

a, b

h

. ~1 Y> z

u, -v

w

P

.—

length and width of plati, respectively

thicbless of plate

coordinates of a petit in plate

horizontal displacements of points ti middle surfaoe
in x- Snd y-directions, respectively (nondhmmsiona

forms are ua/h2, va/h2, respectively)

deflection of middle surfaoe from its initial plane
(nondimensionalform is w/h)

normeL load on plate per unit area (nondhnensional

form is pa4~4)

Youngts mdulus and Poisson:s ratio, respectively

flexura.1rigidity of plate

(=?~.a>’ ‘--
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Ux”, Uy:’, T= II

6X”, +, Y=”

F

A, A2,..., An

~mbrane sta?essesin middle surface (nondimmsional
forms ~ ax‘a2/Eh2, Uy~a2/~2> ti ‘~ ‘a2/n2}
respectively)

extmem -fiber bending and shearing stiesses
(nondimensioml forms are ax’’a2/Eh2, ay“a2@h2,
~ TWna2@h2, ~SpeCtiVdy)

mmibrane strains in middle smfaoe (nondimensional
forms are 6X‘a2/h2, Eyta2/h2, and 7V ‘a2/h2,

respectively)

extrem3-fibqr bending and sheering stiains
(nondimnsion& forms are 6x’’a2/h2, 6Y“a2/h2,

m 7- “a2/h , respeotLvely)

stress fUn&xLon (nondimnwtonal form is F@h2 )

first-, second-, .●., to nth-order differences,
respectively

first-o*r clifferences h x- and y-directions,
respectively

FUNWENTAL DDFERENTUL EQUM’IONS

The thiokness of the plata is ass-d small ccmpaxd with its other
dimmsions ● The middle plane of the plate 1s taken to coinoide with the
%Y-Pl~ of the coordinate system and to he a plane of elastic s-try.
After lending, the points of the middle p= ere dlsplaoed and lie
on SOB surfaoe which Is called the middle surface of the plate. The
displaoemmt of a point of the middle @ane ti tl& direotion of
the z-exis w is called the deflection of the given point of the plate.

Consider the case in which the defleotlons are large b comparison
with the thiokmsss of the plate but, at the - tire, am mall enough
to justify the following assumptions:

.
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1. Lines normal to the middle surface before deformation remain
normal to the middle surface after defo~tion.

2. The normal stress a= -perpendic~ to the faces of ths plate
is negligible in comparison tith the other normal stresses.

In order to investigate the state of strati in a bent plate, it
is supposed that the middle surface is actually d.efornmd and that
the deflections are no longer smsll in comparison with the thickness
of the plate knztare still.small as compared with the other dimmsions.

Under these assumptions, the followh.g fundamental partial
d-ifferential equations governing the deformation of thin plates cam be
derived from tlm compatibili~ and eqtilibriun cotitions:

——- —

a# 2W2J —

l@
where D = the m3dia-f iber stresses ere

12(1 - V2)’

and the medien-fiber strains are

‘x’‘KiiH5!!l
‘“ ’42-“3

.._—_
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The extrem-fiber bending and sheering stresses are

It Eh (a+?
ax

= -2- ~2

Eh

(

a2w=-— .
aY“ 2(1 - pq @

Eh a%
‘XY”= ‘— —

These expressions cm be tie

2(1+~) ax*

nondimensional

Ff=&
h2E

2

0

a=
a’=-

Eh

wherw a is the smaller side of

a% “
+T!%)

by writing

a.
a

:

Q
~2

6’=e -

.:

“,

,

.



.

.

NAC.A~No. lk25

H & =0.1, which veMe is characteristic of
the primss are dropped, the partial differential
form axe

9

al.uminxmlSJ.loys,SJld
equations in nondimensional

The

The

ncmm?lensicmal mdian-f iber S% sses are

non&bnensional

rIc)nmIlOrm.onal

-dian-fiber strains are

extram -fiber

3% a% )-2~* &Ty
(2)

(3)

%end.ingsmd shearing stresses qw

(4) -
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11 C!!!+”aaY” = -2(1 - &7 *2

.

1 a%
‘d’ = ‘—2(1 +~) a—a

.

(5)

FORMULATION OF BOUNDARY CONDITIONS

The governing differential eqmtions are 2 fourth-order simul-
taneous partial differential equations in two varia%les. In order to
obtain a unique solution in the case of rectangular plates, there must

—

le four given boundary conditions at each edge.

Before proceeding to the actual case, two theoretical%oundary
conditions mqT be mentioned:

-..
.

1. Simply supportid plates, that is, plates having edges that can
rotate freely about the supports and can move free& along the supports

2. Clamped or hilt-in plates, that is, plates having edges that
are clam-pealrigidly against rotatim about the supports and at the same
tim are prevented from having any displacements along the supports

Aotually, it is to be expected that neither of these conditions will
be fu3fi11.edexactly in a structure.

The bendhg problem will be considered next, in which the bottom
platkng of a seaplane is to be studied. The lmha.viorof the sheet
approxhnates that of em Minite sheet supported on a homogeneous
elastic network with rectsmguler fields of.the same rigidity as the
supporting framwork of the ssaplane.

Becauso of the synmmt~ of the rectangWar fields, the displacemmt
in the plane of the sheet and the slope of the sheet relative to tho
plane of & network must be zero wherever the sheet passes over the
center line of each supporting beam. Each rectangular field will
therefore behave as a rectangular plate clamped elon$ its four edges on
supports that are rigid .enou@ in the plane of the sheet to prevent
“teir displacement in that plane. At the seinetime these supports must
have a rigidity normal to the plane of the sheet equal to that of

s
●

the actual supports in the flying-boat bottom.
—

.
.
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The rigidity of the supports will lie somewhere between the
unatta~%le extnxnms of zero rigidity and infinite rigidity. The
extreme of infinite rigidity normal to the plane of the sheet is
one that may be approximated in actual designs. It can le shown that
the stress distribution ti such a fixed-ed~ plate will, in most cases,
be less favorable than the stress distribution in the elastic-edge
plate. The strength of plates obtained from the th60ry will therefore
be on the safe side if applied in flying-boat desi~. Refere~ might
be made ~ this connection to a paper by Mesnager (reference 25), in
which it is shown that a rectmgulsr plate with elastic ed~s of certain
flexibility till be less highly stressed than a clamped-edge plate. This
clifference in stiss may also be clesrly seen by comparing the extrem -
fiber-stress calculations by Levy (reference 19) and W~ (reference 15)
for simply supported plates and clamped plates.

The impact pressure on a flying-boat bottom h actual cases,
however, is not even approximately uniform over a portion of the sheet
covering several rectangdar fields. Usually one rectangular panel of
tie bottom plating would resist a higher impact pressure than the
surrounding panek, snd the sheet is supported on beaus of torsional
stiffness insuffIcient to develop large mom3nts along the ed~s. The
high lending stxesses at the ed~s characteristic of rigidly clsmped

. , plates would then be absent. In order to approximate this condition,
the plate may be assmmd to be simply supported so that it is free to
rotate about the supporte. At the ssme tim the riveted joints prevent
it from moving in the plane of the plate along and perpendicular to the

●

supports. According to the _ considerations as in the case of rigidly ‘-
clampl edges, the result would be on the safe side. This case has
never before ‘beOn discussed and the study
be of tiportance.

For the com%ined bending ti’ buclding
ations will hold. It is evident, howsver,
thrust is applied, there are displacements
supportad edges in the plane of the plate.

of such a problem seems to

problems the s- consider- _
-t as soon as the side
Perpetictiar to the
w (reference 26) has

found that a stiffener attached to a flat sheet carrying a compressive
load oontributid approximately the _ elastic support to the sheet
as was required to give a simply supported edge (see also reference 20, .

P. 327) ● In combined bending and compression problems. therefore. it
seems slso important to stu& the ide=l simply-supporbd
analytical expressions for these boundery conditions are
the following discussion.

. Sin@.y Supported Edge

plates ● “m
formulated.in

.-

Iftheedgey = O of the plate is sim@y supported, the deflection w
along this edge must he zero. At lihes- tim this edge can rotate freely
tith respect to the x-~i.sj that is, there is no “bend3ngmoment

3along iihisedge. In this case, the analytical formulation of the hysical
boundary conditions is
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Similarly, if the 9Q3 x = O of-the plate is simply supported, the
boundsxy conditions sxe

(+* = o

Since w = O along y = O, &/& and #w&2 must be zero
also. The boundary conditions can therefore be written as

(6)

(7)

Similarly, on the edge x = O,

(W)xa = o

If the plate has ideal sml.y supported edges, it must be free to
move along the supported edges in the plane of the plate; that is, the
shearing stress along the edges in the plane of the ylate is zero.
Analytically,

()
I

‘w’ @-J = 0

b

.

—

.

.
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or

13

One more %ounda~ condition is required to solve the plate problems
uniquely, and this ~ he obtained by specifying either the normal
stresses or the displacements along the edges.

For a plate having zero-edge compassion, the normal stresses along
the edges are zero. That is,

( )tid=’ =0

()‘Y’Y-=0=
o

or

(-9):.4=0

()a2F so

s ~=o

1

The strain in the mwiianplane is

.?Z+& *“2%‘ oay2ay

(8)

.
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Therefore

and the diaplacemmt of

u=

NACA TN No. 1425
,

L)au=,xl. ~ F2 “-’-’
ax

$= o.& &2
‘Y’ 2 by

the edges fn the x-direction is

lf=comt=t~=ky]~- ““

,

.

. . ... -_

.—

while the displacemmt of the edges in the y-tieotion is

‘= LoM*t[’y’-:(5]*
,

The addition of side thrust may be expressed in terms of the
chan~ in displace-nt of the edges.

If Gx’ end G ‘Y
are expressed in terms of the stress function F,

/’
u. Jy=conslxult

/

t

v = lJx=Com*t

Clamped or Built-In Edge

.
.

(9)

If an edge of a plate is clamped, the deflection along this edge
is zero, and the plane tangent to the deflectid middle surface along this
edge coincides with the initial. position of the middle plane of the plate.

.

.
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D? the x-eXis
Oondltiom are

If the y-axis
conditions are

Coinoides with the clmlJp3acd@, the boundary

(w)- = o 1-

coinoides with the daqed eQ3, the bom

15

(lo)

(w)x~ = o

(1&Zkd=o

It!the edge Is claqed ri@Uy against my displaoemmt along Its
support, the strati in the =dlan fikrs must be zero along that edge.
The boundazy renditions are

o =0%‘ =4

o~=t =!0

yao

or

(! -“$3)X4‘0
(u)

J

The 0= additiOti Oondition requ&ed iS ~ fbmished %y
specifying the displacements along the edges as in equation (9).



Rivwted Panel with Normal Pressure C&eater than That of

surrovll&!mgPanOls

The %oundary conditions whloh would approximate tbls situation
exe, if y = O is one of the edges,

fx40mtJE-m($Ylw=o

(=)

The first two expressions are those of simply supported edges,
the Wrd one givee the oondition of zero sixain alou the SUDDOrtB,
end the last one specifies that the disphcemnt SJ.o& the ed& is zero.

REVIEW OF F!REmows WORK

The large-cleflectdon theory of flat plates is given by A. Fdppl
(referenoe 1), ami the difficulty of solving the nonli~ar equations
has been noted by Theodore Pm H&mi% (referenoe 2). The earliest
attampt b deal with these clifferential equations was, perhaps, made
by H. Henoky (references 3 and 4), who devised an approxlnurtemthod
of solution for airoulex and sg,wcreplates when the deflection is vqy
lar~, the bending stiffness being then negligi.bl!s.Following the
seam prooedure, Khiser (referenoe ~) solved the case of a simply supported
plate with zero edge impression under lateral loadhg. His theoretical
resuit oheoked closely with his experimmtal data.

In the case of oirmlar plates with lar& deflections, because of
the radial synmdry, the two fundamntal partial differential equations

.

.

.

—

●
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which contain the linear Mharmonic differential operatir and quadratic
terms in the,’second derivatives can be reduced to a pair of or-
nonlinear differential equations, each of the second o*r ● For ~0~
the bending and the buckling problems, exact solutions are available
(references 8 to I-2). T* bending problem has been solved approxtitely
hy Nadai (reference 6) - Timoshenko (reference 7) and exactly by
Way (reference 8) when the plate is under I.atiralPssure and edge
momnt. Wq gave a power-series solution for a rather lare rsnge of
ap~lied load. The but- problem has been solved by Federhofer
(referenoe 9) end l?&iedrichs emd Stoker (references 10 to U). Federhofer
gave the solution for both slm&y supported and olmqped edges whioh
yields accurate resultO up to values of N of about 1.25,where N iS
the ratio of the pressure applied at the edge to tk lowest criticel
or Euler’s pressure at which the buoKLing ju8t begins. Friedrichs _
end Stoker gave a oomplete solution for the simply supported cticular
plate for N up to Nini@. To cover this _, they employ three
mthds. Each of the three ~lihcilsis suitable for a particular rsne
of values of 19: nem~, the perturbation nwthod for low K, the
power.-eeries~thod for titermdiate l?, euulthe asymptotic solution
for N approaching infinity. @re is no solution, however, for
the case of circular platas under oorbined laters3 pressure and edge
thrust.

The exact solution for a W, infinitely long, reoteaguler
strip with damped or simply supported edges was obtained by Boobnoff
and Timshenko (references 13 and 27), and tlw other cases were discussed
by Prescott (reference 14), Way (referenoe 15), Green and Southwe~
(reference 16), IJMY (references 17 sad I-9), and LSVy and &eenman
(reference 18).

Prescott gives an approxbmte solution for the simply supported “
plate with no edge displacementj however, PZWSCOti’s a~tion
is rather rough. Way presented a better appro~te solution for the
clamped plates %y using the Ritz energy mthod. KAiser (reference 5)
tianefomed tie clifferential equations Wto finite-diffezwnce equations
md solved them %y the trial-and-rror method. Green and Southwell
extended the finite-difference study into fizm? &Lvisime and solved
the difference equations by m3ems of * relaxation nsthod.

Levy (reference 19) gives a general solution for simply ,suyported
Plates, and numrlcal soluticms =S @-n for m~ ~ recq~
plates with a width-epen ratio of 3 to 1 under SOIB co~ined lateral
and side loadlng conditions● ~vy sad ~reenmam (references 17 ti 18)
exte@ed this solution for simpl& supportsd ed@s to clamped ed@s.
Their conditions are, however, Nted w *e =- ~ *ich * e-

—

supports are assured to clamp the plate rigidly agalmst rotatiops and
displacemmts normal to the edge hut to aJLow tisplaoemnts parallel
to the edge. They presented a nmerice.1 solution for square and
rectmgular plates with a width-span ratio of 3 to 1 under lateral.
pressure.
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In summary the problem of’rectangular plktes with large deflections
has been solved by three methods: namely, the energy method, the finite-
difference-equationsmethod, and the Fourier series method. These methods
are briefly outlined in the following paragraphs.

Ener~ Method

The mthod of attack usedby Way (refereme 15) is the Ritz
energy method. E@ressions are assumed for the three displsmements
in the form of ~b~ic PO~-_S satisfying the 10_ co~ti~j

then, by means of minimizing the energy tith res~ct to the coefficients,
a system of simultaneous equations is
gives these coefficients.

The ener~ expression for plates

u{(f+)2
v.—-

2 ‘[
qw+6 %2+

obtained, the solution of which

with large deflection

SWX2 + VY2 + VYWY2

)

~2
~wz+%~
Y2

is

+l-V~ (uy2+ Puyvx +-VX2 + z~wyyy + 2-VXWXWX)
1}

W ay (13)

where u smd v are the nondimensional horizontal displacewnts and w

*4
is the nondimmsional vertical.displacement, q = — and the subscripts

16Dh’
indicate partial differentiation. In order that u, v, and w
satisfy the boundary conditions for .oMped edges, Way assws (fig. 1):

u=(l-#)(p2 -

v = (1 -X2)(P2 -

w = (1 - X)2(92 -

2 +%2& +IL##)Y+c(boo -+bo~

Y*)Y(COO + C02Y2 + ~2@2 + C2>2Y2)

Y2)2(%() + %2Y 2 + a2~2)

.“

(14)

.
>

where @ = ~; u, v, w are positive in the positive directions of x,
Y> z) respectively; and aid, %S) ci~. are numerical constants to le .

detemined later. For convenience, i is taken to be the same as the
.—

power of x, and J that of y.



When V is minimized.with respect to

hijy - ciJy 11 simultaneous equations
11 constants, ace obtained as folhws:

the ccafficients
Corresplaing to

=0

. These equations are not linear fi the constants. The first

aij2
the

three

19

(15)

(16)

(17)

equatio= (equation (15)) wi= contii.n terms of the thtid degree
in the a’s. Equations (16) and.(17) are line= in the b’s and c’s

. and quadratic in the a‘s. way solved equations (16) smd (17) for h‘s
and C*S, respectively, in terms of a‘s and then substituted these
expressions in equation (15). There then axe left three equations
of third degree involving the a ‘S alone. !Fheeewera solved by Way
%y successive approximateions.

Way gives the numrical solutions for cases for which t3= 1,
1.5, and 2, for ~=o.3 Upto q= 210. Since he assmd the disp-
lacements to le polynomials in x and y of finite num%er of terms~
his solutions are essentially approximate. By comparing with Boo%noff’s
exact solution for the infinite pkte, Way estiuted t~t the error of
his solution for P = 2 is a%out 10 percent on the conservative side.
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Finite-DifferenceMethods of Solution

Xhiser writes the nondimmsional Von K&m& equations as follows:

()V%= iiik2 ?.3%S%
h ay -~2&?5 =-=

V2F = S

1 v%
lz!(l~ W*)

V%=M

“P - pG

“J

(18)

equations into finite-dif~e~nce equatlons.end then trsmsfomns these five
His procedure is to ass- w‘s ‘at all the points and then to soive
for S’s, F’s, M’s, and W’S. If the calculated w‘s do not check
with the asswned ems, he ass-s a new set of w ‘S W repeats the.
process. The work which this involves is very tedious. In fact, as
will be pointed out later, whsn the usual nmthod of successiiw
approximations is used, the process is actua12y divergent. Ekiser
solved the simpl# supported square plate with zero edge compressfon

4
under a un~orm lateral pressure of ‘A = IJ.8. 72. His numrical. solutio)

Eh4 ,

checked with his exper@ental results with good aocuracy.

Southwel.1and Green solved four exsmples of the problem by mm.ns
of a technique based .onthe relaxation method. The fundsmntal
requirements for use of the relaxation techniqm are a simple finite-
clifference pattern of the variables and a simple expression of the
boundary conditions. In using this, Southwell and Green expressed the
differential equations in terms of the d.isplacemmts u, v, and w,
which then gave”simple boundary conditions. Instead of using exact
relaxation patterns, they worked with the patterns which em given
by the linear terms of the differential equations snd made corrections
from time to time, the nonlinear terms being combined with the
“residue.”

.

--

a

.

.
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,.-

O& &’
‘2 ax

+(1-9)

a

KJ

&2

s-

~

[()

&2

ays

It is retilv seen that, in order to o%tain a sbple expression
for tie bomdary &onditions,-not only is tlm nmller of the partial
differential equatibns increased from two to *98, %ut slso the form
of the terms involved becoms more complicated and the number of terms
is inoreased. This technique proves very la%orious in practice.

Equat>on (19), express- conditions of eqtiibrim, could haVS
been derived by minimizing the total potential ener~ V, which is
given by the expression

L2 ~—. =1~+ 12+13 (20)
~2 D

where

1 J’J’()

2
11=> v% tidy

where ~ is the lateral l-oading.
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The relaxation techndque consists first in assumhg a set of
answers and then changing them according to the xwlaxation pattern
and bomdary conditions. To obtain a more rapid convermnce. Southwell
and Green &ti@Lied
them into the ener~

the given values of w ;y k and”subs~ituted
eqression to obtain

which -S then ndnimlzed with respect to kj that is, by Setthlg

~=o to give

21dIl+4k%2-ti3=0 (22)

.

*

(21)

lh?omthe third-order equation (equation (22)), k can be obtained and
a set of values for w which sre closer to the txue values can be
derived.from values of k.

Fourier Series Methods of Solution

Levy and Greenman obtained @neral solutions of the rectmgular
ylates (fig. 2) under ccmibinedbending and side thrust with large
deflections by mans of Fourier series. Their approach to these
problems is given in the following discussion.

simply supported rectan@lar plates.“ In order to satisfy the boundary
conditions, w is as-d to be given by tie Fourier

—
series

-.

?$ (23)
—

—

The nomml pressure my be eqressed as a Fourier series

‘z= X .S ‘r,sstir%stis%
r=l,2,3 s’=1,2,3

(24)

—

.

.
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oompati%ility eqmtion to he satisfied, F must be given hy

where
in the

1
l?>~

‘1 =

B1 =

‘2 =

B2 =

B3 =

B3 =

PX and & are constants equal to the average membrane pressuze
x- and y-dhmtions, respectively, and.where

E
(B1+B2+ B3+B4+B5+B6 +B7+B8+B9) (26)

g\2

o if q=o

-k)(q - t) - &’(q - t)~wk,twp-k,q-t

,

ifq+oemdp+o.

orp=O.

t) -1-aq - 1t)2 ‘k,twk+p,~-t+p)(q -

if q+o.

Oifq=o.

Oifq=o

p)R(q - 1t) + (k + p)2(q - *)2 wk+p,twk,q-t

Hq+oanap+o.

orp=O.

—

—

—
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‘4=mlH(~-
k)(t +q) +k2(t + q)~wk, tw~-k,tW

k=l t=l

if p+o.

B4=oifp =0. —

ifp+omdq #o.

B5=0 lfp=Oorq=O.

if q+o.

‘6 =Oif q=o.
,

Ifq+oandp+o.

B7 = Oifp=Oorq=O.

m co

‘8 =
&qc

lct(k+p)(t +q) - (k +.p)2(t + q)~wk+P,twk,tw
=1 & !. .=. . . . .-.

—

._

—
.



.

.

.

.

NACA TN No. 1425

ifq+oandp+o.

B8=Oifp=Oorq =0.

B9 =5 :“ [(k + p)(t -I-q)~ - (k + P)2t~wk+p,t@k,t ~

k=l t=l

if p+o.

‘9 =0 if p=o.

The equililn?im equation is satisfied if

25

●

.

.

.
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.

—

-

‘~~[t(k+r) ]2- k(t + s) b,,twk~, t+S

‘=0 t=o

+= ~[(k+‘)(t ‘ ‘) - ‘]2%*swk+~,t
‘=0 t=l

+X$I..- 12
(’ + r)(t + ‘) bJ@&,tw,,t+~

‘=1 -t@

-S2Ht+s)’- 1’
(k + r)t bk+r,t+swk,.

k=l t=l

w

-g&-[ 1

2
tk+ (r- k)(t + s) br-k,.wk,t+.

- z: I&-‘)(k‘r)+ 42’’%++%.
‘=0 t=l

+ ~~[(s-‘)’+ ‘(k+‘~2bk+r,s+twk,t
‘=1 t=l 1

.

.

.

(27)
.
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. When the lateral pressure is given, ~,~ can be determined.
Equation (27) represents a doubly infinite family of equations. In
each of the equations of the femlly, the coef$iolents 3P,~ ~ be
replaced by their values as given by equation (26). w resulting
equations will involve the known norml pressure coefficients ~,s,
the cubes of the defl.ectionccefficients Wm ~, * the a-rage
Mtirane pressures in the x- and the y-directions, ~x and. ~ ,
respectiw~. VKLU9s of & and ;Y cea be determined from %s ‘-
conditions that the plates ere either sub~e.ctedto hewn edge compressions
or known edge dis@acem3nts. The nudber of these equations is equal
to the number of unknown deflection ccefficients Wm,n.

The procedm now is, with the known values of ~,s, to assume WL ~
and to solve the other coefficients by successive approximation. However;
the work involved is -mndous, and it is very easy to * miste&Bs.
As illustiateilby Levy ti a rel.atiwly simple case of a square plate,
if six defI.ectionccmfficients are used, then each equation contains
60 thtrd-order terms. M for each given a~plied norual pressure
these Sk 60-term, third-order equations must be solved by successive
approximateions. .

Clamped rectangular plates.- Iavy and
clamped rectangular pla’w by assuming that
against rotations snd &LsplaceBnts normal
to move freely perallel to the edges.

Greenmn solved the case of the
the edges em clamped rigidly
to the ed@s but sxw permittid

—

Ths required ed@ momsnts ~ and ~ em replaced by em
auxiliary pressure distribution pa(x,y) nm.r the edges of.the plate.
The amilisry pressure cem be expressed as a Fourier series as follows:

By writ= ~

coefficients to
-%

as Foru?ierseries, where ks e.nd~sxe

be detemined,

(29)
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bserting equation (29)intoequation (28)gives

NACA TN No. 1425

2

0Pa(x,y) = $ P

on Conmnirlg the

Xz (rks + s%) sin y s~ s? (30)

-1,3,5 S=1)3J5

auxiliary pressure Pa(x,y) with the normal

pressure pz, equation (24),

m

Pc(x,y) =
x

r=1,2,3

the follmdng equation is obtained:

Since the edge mcmmts ~ and ~ have been replaced by the
auxilimy pressure distribution pa(xjy), “the general solution for the

These values E&- obtained by use of the

slope at the edges of the plate is zero.
slopes along the edges gives

co m 3

simply supported rectan@ax plate (equations (23) to (27)) C- M
applied to clamped plates, and the re~ problem is to ~tim
the V&dW3S Of ks ani k&.

boundary conddtion that the
Equating to zero the normal

.

.
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Equation (33)is equivalent ta the set of equations.

0 = ‘1,1 + 3W1,3+

o = ‘T3,1 ‘W3,3 +

o = ~5,1 + 3W5,3+

The deflection coefficients wm ~
f&dl.y of equatkms (equation (27)) $or

5W1,~ + .s. 1
‘3,5+ ““”

5W5,5+ ● **

~

29

-.

(34)

must now%e solved from the
the lineer term in terms of the

cubic terms and the pressure coefficients pr s. The e~ressions for Win,. “-

tibm obtained are now substituted into equati~n (34),,EI.Rdthe expression
for pressure coefficients pr,s are obtained from equation (32). The
resulting family of eqwtions contains lhsr terms of p% ti pks

and the cubes & the deflection fURctiOns wm,n~
.

The method of obtaining the required values of the deflection
coefficients Wm n snd the ed~-moment coefficients p% emd ~pka

}
. w~l

consists in assuming values for
h

end then solving for ‘~
Eh4’

w~
h’ ““”9 P%, Pq)””” by successive approximations from the

simultaneous equations. The procedure is even moie laborious than that
for simply supported plates. TWO numwical solutions exe gi-~en”~namly
solutions of the bending problem for a square plate and for a rec~. ...
plate with lengkh-width ratio of 1.5.

FINITN-DIFFERENCE XQUATIONS 02 BOUNDARY-VAIJJZERCWXMS

SonE fundamental concepts about the fWte-difference approxi-tion
may be worthy of -ntion before the partial differential equations are
converted into finite-difference expressions. .—

.

It is asswned that a function f(x) of’the variable x is defined
for eqtidistent values of x. If x is one of tie values for which f(x)
is defined, f(x) is also defined for the values of x + kAx, where Ax
is the interval between two successive values of x a.d k is an integer.
For the sab of s@licity, the value of the function y = f(x) for
x +k&c -y be written as:

.
f(x+k&) =yx+~
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The first difference or the difference of the first order @x
of y at the point x is now defined as the increm3nt of the value
of y obtainedJin going from x to x + Ax:

It is seen that the increment in,the direction of increasing x has
been arbitrarily chosenj %x could also be defined by the difference

.
Yx - yx-~. This process is continued and the inmemmt of the first
difference obtained in going from x to x + k Is called the
difference of second order of y at x; that is,

( )( )= Yx+& - Y~+& - Yx+& - Y~

. = YX+*

In general, the clifference of

- zYx+& + Yx

order n is defixmd by

If Ax is chosen

Anyx
n-1

=A YX* -
An”~

dx

equal to unity,

By the use of this notation,

Yx~ = Yx+n

the sequence of differences becomes

—
.

—

.

.

.
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. 4. = yx+~ - Yx

A~x = Y=@ - 2Yx+l + Yx

A3YX = YX+3 - 3YX+2 + 3YX+1

. . . . . . . ..0.. . .

n

A%= =
x

(-l)r ‘:

r=O
r!(n - r)!

31

. .

- Y=

● ✎☛

‘x+n-r (35)

In.many physical problems only differences 0$ even order occur.
In such cases

Amyx in the

it is more convenient to clef- the differences

folhwing way:

A2Y= = Y=-1 - 2YX+YX+1

That is, A2yx ia thtg~re~nt of -&e first &lfferenoe taken on the

right- and left-hand sides of the point x. In general,

(36)

~ this case a d3fferem3e of order 2m represents a linesr expression

~ Yxwly Yx-tily “““j Yxj ““● y Yx+n-lY Yxa’

In replactig partial derivatives by the finite-clifference
expressions, the differences corresponding to tie changes of both the
coordinates x and y are considered. WitJIthe notations as shown
in figure 3, the first differences at a point ~,n in the x- and
the y-directions are, respectively:

%Wm,n = ‘m+l,n - ‘m,n

%Wm,n = ‘m,n+l - ‘m,n



%- %l,n = fyf.Q+l,n- +y%l,n

c=‘m+l,n+l - ‘m+l,J

= ‘m+l,n+l - ‘m+l,n -

(-J)‘m,n+l - ‘m,n

w +W
m,n+l m,n

NACA TN No. 142532

The three klnde of second differences are as follows:

~wm n = %%m nJ J

= ‘m+l,n -2wmn+w
) m-l,n

~wm,n = qzw m,n

= ‘m,n+l -2wmn+wm n-1

1

(37)
9 9

.

=W - 4wm+l ~ + &m n - 4wm-l,n + Wm+ ~m+2,n J 9 )

*wm,n = ~4wm,n
.

,- kwmn+l +6wm,n - 4~,n-1 +wm,n-2= ‘m,n+2 9

%Wm,n = ‘W%m,n

= ‘m+l,n+l - 2wm+~ n +Wwl ~-1 - 2wmn+1 + 4wm~
9 > > )

- ‘m-l)n + ‘m-l,n-l-w
m,fi-1+ ‘m-l,n+l

/

.

.1

-.

.

> (38)

.
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Partial derivatives - be approxhated by fMte
followsz

_&=t&
2X2 +2 &%!#

When these relation9 exe used, the f~n~ XieJ-
equations (1) and (2) w be repmmd by th fo~-
equations:

\

I

J-J

dtiferenoes as

(39)

d~erential
Mfferenoe

(4(3)

.

.
“
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IY AX=
equation (40)
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& = A?, and tie relations (37) and (38) are used,
~ be written as

Fm%,n - @’m+l,n + 20Fm,n - @m-l,n + Fm-2,n + ‘m,n~ - ‘m,n+l

- 8Fm ~“1 +

J

(= ‘m+l,n+l -

(x ‘rn,n+l -

‘m++,n - 13Km+l
J

‘m,n-2 + ‘m+l,n+l + ‘m+l,n-l + ‘m-l,n+l + mm-l ~ ~
>-

2

%+1, n - ‘m,n+l
)(+ ‘m,n )- ‘m+l,n - ‘m)n + ‘m-ljn

2W )m,n + ‘m,n-l

,n + 20wm n - &m-l n
> >

(41)

+W
m-2,n + ‘m,n+f?

- 8Km ~+1
#

~~l,n-1 + *m-l,n+l + ~m-1,n-1

—

1(= 10.8(AZ)4P+10.8 Fm,n+l )
- ~m,n +Fm,=-l

(x ‘m+l,n -

(
x ‘m,n+l -

(x ‘mi-l,n+l

2Wm,n
)

+ ‘m-1,~ +

m m,n )
+ Wm n-l -

9

- ‘m+l,n - ‘m,n+l

(Fm+l,n -a’mn
)

+ ‘m-l,n)

(, )
2FM1 =+1 - Fm+l ~ - Fm,n+l + Fmn

Y 9 J

+W
)]m,n

(42)

‘In actualJy writing these equations for eaoh net point, it is mom
convenient-to employ tlm i%ite-difference pattern or so-oalled
relaxation pattirn as shown in figure 4 rather them to substitute
directly into

In tarms
formulated in

equatims (41) smd (42).

of finite differences, the boq cotiitio~ can ~
the manner discussed in the followtng pemgraphs.

.

.“

.

.

.

.-
.

—
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●

Silqply

The boundary conditions f=

Supported Edge

the simply supported edge y = O are:

and, for plates with zero edge ccuupression:

L)

a~ .0

@

m, for plateswith zero or known edge

Let n = O denote ~ edge yoints along y = O. TIE finite-
Uffe=noe e~ressions for the boundary conditions axe:

(43)

(44)
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for plates with zero edge comyessfon and

Ialere
y=b,
in the

NAC!ATN No. 1425

(45)

n=O and. n=k denote points along the two ed~s y=C) and
respeotimly, sxld i denotes any point along the 1- x = Constunt
plates

Clmrped Edge

The boq cmditions for the clamped

(w)@ = o

(? Gy=o=o

. @-e),d=O

edge y =0 eqe:

n- -

With the sam notations as were used
the f imlte -Mf’ferenoe e~ssions are:

.

.

,

.

-.



NhCA TN NO. 1425 37

t
Wm,o = o

(+ydm,() =0 1(~% - PL@j,o=o (46)

Riveted Parml with Ibrmal Press- -ater then That of

Slmrounding P-l-s “

The boq oonditione whioh appro~ta this ease are:

(u)@ = o

ify= O is one of the edges.

E2qressed
. beconm:

.
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Wm,o = o
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}

(J+7)

In order to start with a xtn.Qer ease, the Square flat plate till
be discussed, since, on acco~t of symmtry, oxily~ -ei~th of the
plate need be studied.

The finite -diffexwwe approxhation of any d&ferentiel equation

requires that evwq point in the domain to which t3M equation a~lies
must satisfy tlw initial diffenntial equation. Ifthepoints tobe
talmn are Mini* in number, the solution of’ the difference equatims
5.s the erect solution of ~ CO- SpOg differential equations. But
the points to be taken are finite in number, tk solution will be
approxtite, and the de-e of approxi3mtion will. hreaee as the

number of points tedwn is reduced.

shoe the amgoxs of a square plate are axes of symmtry, if
the bom ~~ti~ ~~ - fo~ ddes = t& ~~, wi k =wk i

~ ‘i,k = ‘k, i” ~ conditions for zero edge displacements ~ ‘

be put tito different f orme. S-

then

.

J
The boundary-value ~roblem which approximates the riveted sheet-

stringer psnel s~~ected to uniform normal pmssum higher thaa that
d the Swroundlng panels may be forznllatea.in tknmm of finite
differences.

.,



, .

In term of finite diffemmoes,
.

~(~x)o,i + (6x)l,i + ● S* + (6x)m,1+ ● ** +*(6=)k,i = #(AX)~.y+) ( Wam,i

k-1 2

= :(@2 ZJm+l,l
)

- ‘m,i

mm

.9naA3

ii

k-1

x(

2

G%@ )
‘i,n-hl ‘Wi,n

(48)

w
U3
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Noy,
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~ ‘(!3+5!)(-)

NObtko?=$+$. Equation (48) then beccmes

@)i,o + *@)i,# + ,.* + 2@i,n + ● .. + 2@9i,k-1

()
+%

i,k = &(AZ)’ ~ @,n+l - ‘t,~2
ix

.:

(49)
.

This simpltiication
relaxation method.

is not necessary, but it is useful in applying the

n= 1.- On referring to figure ~, It .isseen that points 1’ and 2‘
axe fictitious points placed outside the plate in order to give a
better approx~tion to tiheboundary conditims.

the

where

●.Bythe use of W* = 0.1 or w
compatibility equation becomes

-,

.

K. = (W2 - 2W1 + W;)* - (2w~ - 2WO)2 “ ,
.



.
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Then the equilibrium equaticm is .-

- 32W1 + &2 + 4W1, = P’ + 10.8[2(2F1 - 2FO)*(2W1- 2WO)
L

- 2(.W2- 2W1 + WO)(F2 1-2F1+Fo)

where p r = u(1 - V2)(AZ)4P = 0.675P, sh.ce AZ = ~.
2

The hO- Conditions sre:

(a)wl=o, W2=0

(b) WI, -2W1+WO=0

(c) F. - 2Fl + FII - V(Z5’2- 2W~) = o

~ (d) (4FI - 4FO) + (F. + 2F2 + FII - 4F1) = S1

-.

(51)

where S1 = (WI - WO)2
(W1 - WO)2 ‘

. The bouxhry-value problem
(l:U)= 0.341826

now deterdnes the vslue~ of w uniquely and the vslues of F to within
an unbcnml constant. Since the actual valvs of the constsnt is irrelevant.,
it may be defined by letting F2 = O. ,

solving wlr, W2t 8.TldFl, frOm the bO_ CCdi~iOIIS.@VeS

the following resuLt:

.

.

w!2
.-WI .()

Flt = -F. + 2(1 - jL)Fl
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men these values are sukmtituted into equatio~ (50), .(51),and (d),
‘the resulting equations are

16F0 - 26.52982kF1 = -3W02
1

16w0 = p’ + k3.2woFo

}

(52)

’02-4F0 + 1.367544F1 = —
0.3418%

I

The eight or nine significant flguzws in these equatio~ are due to
computations made with a computing machine having 10 columns. In ofier
to get satisfacto~ results in subsequent c~utations it is convenient
to retain a number of figures beyond those nomally considered $usti- .
fiable because of the precision of the %asic data.

2n=.- With reference to figure 6, points 3’, 4’, and 5’ are a@n .:
fictitious points. The compatibilityequations are:

20F
o

- 32F1+ 8F2 +-4F =Ko
3

-8FO+25F1- 16F2 - 8F3+6F4+F3f =Kl -

2F - 16F +22F2 + 4F - 16F4 + 2F5 + 2F4, =K2
o ,1 3

(53)

1

where %) Kl, and ~ are equal to

[ 1

(~w)2-&2w~2w atpoints O,

1, and 2, respectively.
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The equilibrium conditions are:

43

-1

.

.

.

.

20W0 - 32wl + 8W2 + 4W3

[
=pf +21.6 (~’ +po’)(wl -We) - Y’(wO - 2W1+W2) 1
-Mo+2%l -16w2-8w3+6w4+w31

[
=p’ + 10.8 czl@w2 - 2W1) + B1’(Wo- Z?Wl+w3)

- 271’(W4 - W3 - W2 +Wl) 1
2W(-J-16w1+22w2 +kw3-16w4+2w5 +2wb, I

where a’, ps, 7’ - +% A=% ~ at the respective points

tidioated %y the subscripts.

The renditions for zero edge displacements em: —

-2F()- 31?1+ k’z -2F3+ZY4+F3,=S1
1

J (55)
F. ‘Z2+~3+F5+F~t=S2

where

1
‘1 [

=—(w~- WO)2+ (W3 - WJ2
o.3m3&5 1

1

[
(W2 - WI) 12 + (W4 - W2)2 -‘2 = or=
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The boun&xry condition are:

(a)w3 =0, ~=o, W5=o

(b) W3, -2w~+w==o

Wt4 -2w4+wp=o

W5, ‘~~+wk=o

NACA TN NO. 1425

.

(o) F1 - 2F3 + F3t - V(2T4 - q = o

‘2 - 2F4 + F4i - IL(F5-F4+F3)=0

For the tam reason as explained.in
Solution of the boundary -omditions

(d) w3t = -wZ

Wt =-w4 2

tie case of n = 1, let F5 = O.
equatione @wes

Wl=o
5

(:) F5, = -F4

F4, = 2F4 + LL(F3- 2F4) - F2

●

✌✝

.



ZYo - 16F1 +20F2 +4.632456F3 - 13~2649=4 =%

1

(56)

-m’* - 4Fl+4F2 - o.632kP@3 +2.632456F4

‘o - 632 i-2.316228F3 +L367WUJ’4=S2

=s 1

!
[ 120 +2L6(CL0’ +@o’ +7.’) Wo

.

[
- 32+2L6(~’ +Po

I
‘ + 27.’) WI + (8 + 23..670’)w2 = Q’

-(8 + l&@l’)wO +
c
24 + 2L6(~’ + P1’ + Y1’gwl

[16+ 12.6(~’ +71’jJw2 =p’

2W() -
[ 116 +lo.8(~’ +132’)wl

[ 1
+ ~o +21.6(%’ + B2; +72:) W2 =Pf

where pt =12(1 - p2)(AZ)kp= 0.0421875P, S- Al =*.

n=3.- Reference is made to fi~
7’, 8t, and gf are fictitious points for
n = lj then the oqtibi~m e~uatio=

7 end to the fact
Z’e~SOllS ex@%ined
are .&s fouows:

7

:

(57)

ttit points 6’,
in the case

.
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\
2oF~ ‘s=l+~p+k?s=~ .

‘&’0 +“25F1 - 16F2 - 8F3 +6F~+F6 =Kl

‘o -l@1H2F2+4 F3-l@k42F5 +~7=~

(58)
‘o -8J’1+4F2+20F3 -,1@4+2F5 -&6+4F7+F6, =%

r
WI - 8F2 ‘@’3+2wJ-&’5+~6-&’7+w& +F7, =K4

2F2 + 2F3 - 16F4 + ~F5 + 4F7 -16F8+2F9+2F8, =~

J

K4S -%
are eqml to

[( )
~w 2 -42-2”

.I
4, and ~, respectively.

.

.
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The equilibrium equationa are:

.

.

20W()- 3a?ptk2+4w3”xl [
t +=.6 (q)’ + ~’)(wl - ~o)

1
- 7~’(wo - 2W’ +W2)

“8i?0-1-2~-16W2 -&3+&4

[
~ ‘ (Wo=p’ +lo.8~’(w2 ‘Wl) +~ - 2W1 + T@

- 271 ‘(WL - W2

-0 - I&= + 22Kp +

1- W3 + ‘W4)

4W3 - 16w~ + 2W5

+ Pa’) (WI - -2 + wk) - 2Y2 r(W2
1

-q+w~)

r(59)

-8w1+4w~+20w3 -16wl@2w5 - &6 + 4w7 + w~,W.

r“P’ +lo*8~’(a’4 -

- 273’(w3 - W4 - w6

Ml - 8w2 -8w3+23W~-

-3) + i33’(wl- -3 + w6)

+ w.+
1 —

1-

1
- 27h’(w4 - w5 - w7 + w8)

2U2 + 2W3

.

=Pt+

.

- 16w4 + 20W5 + kw7 - 1&8 + 2W9 + %8,

[
10.8 (~’ + B5~)(wk - ~5 + w8) - 275‘(W5

= p’ + 10.8a4i(w3 - 2w4 + W5) + P4’(w2-2W4+W7)

“-”--~

1-*;+W9)
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where CL’, P’, end 7’ are &2F, ~2F, & at the respective points .

corresponding to the subscripts, and p’ = 12(1 - W2)(A2)4p =0.CK)833333P,

1
since A2 = ‘.

6

Thi3 conditions for zero edge displacements are:
,

-2F0 - ml + 4F2 - 5F3 + 4F4 -2F6+2F7+F6,=S2 1
F. - 4F2 + 3F3 ‘3F4+~5+F6-~7+F8+ F7,=S2

I

(60)

‘l+~2-m3-=4- 5F~+F6+3F7+Fg+F8t= S3 J
where

k-l

Z(

2
S1=A 1?

1- m+l,i )- ‘m}iWti

The hound.ary conditions are:

(a)w6=oj w~=oj W8 =0, W9=0

(b) w~, ‘~6+w3=0

w,
7

-2W7+W4=0

Wf ‘=8+w5=08.

.,

.

—

. . .

.

—

.
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●

.

.

(c)F3 -2F6+F6, -W(2F7-2F6)=0

F4 - 21?7+ F7, - V(F8 + Ffj- m7)

F= - =8 + F8, - V(F9 + F7 - =8)
J

‘9 ‘

Solutions of the

(d) W6,

w,
7

w,8

‘9 ‘

(e) F6,

‘7’

‘8’

‘9 ‘

-m9+F8=o

boundary-conditions equations

=0

=0

give

.

= -F3 + 1.367~44F6 + O.632@6F7

= -Fk + 1.367544F7 + 0. 96228F6 + O.31522&8

= -F5 + 1.3675&F8 + O. 316228F7

= -F
8

.

.
.

where F
9
= O is assum3d for the sam reason as erpl.aixmdin the case

of n=l.



.
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Combinationof the foregolng equation8 gives:
.

2oF~ -32Fl+%32+4F3=~

-@() + 25F~ - 16F2 -8F3+6Fb+F6=~

Wo -16F1-t. 22F2+4F3-16F4+m5 +w7=q

FO - @l + 4F2 + 18F3 - 1.6F4+ =5 - 6.6324*6 + 4.6324*7 = ~

ml - 8Fp - 8F3 + 22F~ - ~g + 2.3M%!281% - 6.632456??7

+ 3 .31&%@8 = K4

m2+w3- 1&4 + 1~~ + 4.6324XF7 - 13.2649=8 = ~

-2F0 - =1 + 4F2 - 6F3 + 4F~ - 0 .632456F6 + 2 .632456F7 = Sl

F. - kF2 + 3!$3 . 4Fk + ~5 + 1.31622@6 -0 .632456F7

+ 1 .31622m8 = S2

F1+~2-Z3-W4 - 6F3 + F6 + 3 .316228F7 + 1.367344F8 = S3

(61) ,

)

.

.
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[
x + 2L6(~: + @o

‘+ ‘O*IIWO - F+ 2’”’(%’ + “ + ‘“’~wl

‘c“’”’’o)w?+4W3‘“
—

+(6+

[
*0-16+

+ 4W3 -. .

23..671’)%=Pt

10.8(a2 1[ 1t+P2S)~1+22+21.6 (~’ + B2’ +72’) w2

r- 116 +IO*8(~2t + f12t + 472t) ~

+ (2 +2L672’)W5 =Pt “
.

W. - ( )8 + 10.8133’ W~ +4w2 + [ 119 + 21.6(~t + 93’ + Y3’) W3

-[ I16 +21.6(~: +73’) W4+2W5 ‘Zt

3w1 - (8 + 10.@4t)v2 - (8 + 10*%’)w3

51

:62)
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METHOD OF SUCCESSIVE APPROXIMATIONS

Explanation

After the houndsry-tiue problems are expressed in terms of
finiti-CHffexwnceequations, two sete of siumi.taneousequations are
obtained. ~ first set consists of the compatibility equations and ths
equations specifying the condition of zero edge displacemmts. These
equations contain line= terms of the nondimmsional stress fumction F
and the second-order -&mm of the nondimmsional deflection w, and
are of the form

cF+c F+...+
000 01 1

. . . . . . . ..0.

C’lOFO +C’UFl -I-...

where Ki =
[~j2 - @j(~?ll at

correspond- to the subscripts of K;

the

1“
.—

cOnFn = %

cMFn ‘%

. . . . . .

1

+ c’~n = S1

points 0, 1, and so forth,

are given constants.

(63)

.

.,

The second set consists of the equi~brium equations, which contain
linear terms of w with coefficients involv~ linesr terms in F
are of the form

( )~oo + boos ‘o +’ b ‘O& ‘O + b “ooy‘O WO

( )+aol + bol~’o + b ‘01j3 ‘O + b“oly’O W1

(“

. .
+ . . . +

“)
~~ + b~~’o + b’~~’o -I-b“my’o wn = p’

—

.
● ✎✎☛✎☛☛ ✎ ✎✎☛✎☛☛ 9 ****.. . ..* (64)
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where ~t =~%, ~’ =~2F, Y’ =9 at poir@ O, 1, . . .
corresponding to the subscripts of u’,

~’$ ~’;, .- %0s %1) “ “ “~
~ooY bob “ “ “> b’oo, b’O=~ , . ., bm, bol, . , . are given

ooIIEte,nts. -.

E a set of tiues of w is ass-d at each of the net yoints
end the values of Ki and Si are oomputed, eqmtion (63) becoms
a system of lima shnultaneoue equations in F and can therefore
le solvwl exactly by CroutIs rmthod for solving systems of linear
shultaneous equations (reference 24). After the values of F have
been computed from eq~tion’ (63), values of a’, p’, and yI can
be foumd without emy d~ficulty . men equation (64) becoms another
system of linear simultaneous equations and may be solved exactly by
Crout’s m3thod again. u the values of w found from equation (64)
check with those assud, the problem is ccqletaly solved.

h most oases, hewewr, the valuss of w will not check wi&
each other. By following the usual method of Successim approximations,
the computed w‘s will.now re@aoe the sssumd -s and the cycle of’
competitions will be repeated. =thevalue ofwat the end ofthq
cycle still does not check with the one assured at the %eginning of the
cycle, another cycle will be performwl. In this problem, however, if
the ordinary method were fo~owed, the results would be found to diverge,
oscillating to minity ● Theref=e, a special procedure must be devised
to make the procest3converge.

A simple case will be examined first. ~ ths boundary-value
problem tn which q = 1 under tbe normal pressmm p = 100, equatim (>)
c- easily be reduced to the form

1
W. =

16 + 37.690&02

or

W03 i- O.42k507w0 -1.790888 = O (65)

The third-order algebraic eq-tton can easily be solved, and the roots
of this equation are

‘o = ~.09@4 and (+1.549127? 1.1528T8i)
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For
the

the physical problem, only the real root
imaginary roots do not have my -physical

?iACA~~ NO. 1425

is of interest because
meexdx@.

An attempt will

m3 thod of successive
now ye mde to solve equation (65) by the usti
approximati~..

w~ = L20UOO0,

67.5
W. ~— =

70.27474

It is assured that

Wo2 = 1.440000

0.960516

Wo2 = 0.922591

If it is assmned that w02 = 0.922591. for the secondcycleand that

the value of W02 found from tie second cycle is the value for the

third cycle, and so on, tie fol.kming values of w02 ~e fo~d from

various cycles:

1.767416, 0.667554, 2.689324, ~~ so forth ●

These valum em oscillatirily di-r~nt. A plot of these valuss
against cycles shows that they oscillate about the true value 1.206161,
and the true value is appr=imately the mmn of the valuss ob-ined
from two ccmsecutive cycks (fig. 8).

2(1.440CQ0 + 0.922591)If W02 = * = 1.18u% is takenas the

assuredvalueof Wo2 for the second cycle, and the man of this

valueand the value found from the second cycle are tabn as the
assured value for the third cycle, and so forth, * values of w02

.

are found from various cycles as follows:

.

.

.
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Cycles 2 3 4 5

Wo2 assumed I..18u96 1.2125X 1.2u4658 1.206524

W02 found 1.24380~ 1.196766 1.208390 1.204526

Cyales 6 7

W02 assumed 1.206075 ~.206~82

W02 found 1.206289 1.206131

This process is convergent and W. oonver~s to the real root of
equation (65). The value of W. found at the eti of the seventh cycle
is 1.098240 and is accurate to four figures at the efi.of the ftith cycle,
in which case it is found to be 1.098010. The results sre plotted
against oycles in figure 9.

Itistobe noted that ~= -3W02 ~ fie ~a~ of n = 1. T&

values oltained by the method of suocessive approximations would
converge if ~ were assmd to %e the men value of two consecutive

.

cycles. It is found that this convergent proper@ is the sem for n >1.
H the mean of K‘s or S‘s found from two consecutive cycles is
taken, the values sre convergent but are osoillatarily divergent if the
usual way of suoosssive appretions is folhwed.

It -y %e pointed out here that for the special case n = 1, if
t&e mean of the values of w from

9
consecutive cycles is used, the

values are also convergent, h H W. for * second cycle is
ssmmd to be equal to the sum .ofO.6 t-s tie assmd Wue for tie
first cycle snd O.4 times the value found from the ftist cycle, and
so on, the convergence is much more rapid (fig. 10), but this result
is not true for the oases wi~ n > 1.

—

The rapidity of the convergence depends on the aocuracy of the
ass-d values of K‘s and S‘s for the first trial. The deflection w
from the linear small-deflection theory can easi3y he determined. When p
is small, the mlues of u so determined would gin a ftist approx-ti on ‘
to the problem. It is convenient, therefore, to start the computation
when p is ~ and then to consider the cases when p is large.
Also it is advisable to begin with but a few net @nts end then
gradualJy b inorease the ntier of net potits.. For example, consider
ease n = 1. When wo is found for a certa~ ~ p, a
cubve of w

&
against p can be plotted because the slope of tb curve

at the ori qan be deterdned from the small-deflection theory. For
. a larger value of p, W. can now be estimated by extrapolation. For

n= 2, W value of W. fox for n =1 ebeused asa first trial.
Howemr, V2 and W3 are still difficult to estimate. In order to

obtain first approx~tione to these quantities, the ratios w2/w0.

and W /W30 may be found from the small-deflection theory end the values
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of W* and W3 computedby multiplyingtbBse rattoshy the estimwted
Valus of w~. When the deflections havs been ass-d at every pointof
the net, the valuesof K and S cm he oomputed. Theseare the values
which may be used ae a first trial. By eucoessive approximations, the
true values of the W:s are then detemdaed. The valws of wO and

the (wn/wo)is are now plotted against p to estimate the corresponding

values at a larger p. The values estimated by extrapolation may be
used as the trial.values corresponding to that p. w prooess is
repeated until the meximum p is reached. For n = 3, V() from n = 2

is used as a first trialj the re~r of the prooedure is the S-
as before.

Semple Calculations

Finite-difference solutions of smell-cleflection theo~. - The small-
deflection theory of the simply supported square plate will be studied
first. The differential equation is

nd the boundary conditions are

w= O along four edges1

where a is the length of the sides.

With equatipns (66)@ (67)writtennondbmsionally by lettimq

-(66)

w’ = ;,

and yt
end with

(67)

are nondimensional deflection, pressure, and lengths, respectively,
the prims dropped, the houndery-value problem is:

.

--
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By ret-
eqwations for the

4
Vw = 12(1 - Wa)p

w= +LO at x=.2, y=ti~

the notations preciously used, the fbite-clifference
problem =e

57

2++ 2A.&? + A#w

(w)=~,y=~=o

()A#wx=&= o
2

@Y]
% y=+~ = o

-2

where p * = 12(1 - lL2)(AZ)4p.

(68)

For n = 1 (fig. 5), the finite-clifferenoe equation, titer the boundary
conditions are employed, becomes

.

U3Wo= p’

tierefore,

W. = o.0625p’

= O.042188p

for W2 = 0.1.
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For n = 2 (fig. 6), the f~te-difference equations, after the
boundary conditions are tnserted, becoms

*o ‘3~l+~2=Pt

-&. + 24w1 - 16w2 = y ‘

‘o -16W1+20W2=P’

1“

When Crout:s mthod is used to solve these equations the solutions
of equation (69) are

Wo = 1.031250p‘ = o●043506p “

WI = 0.750000p‘ = O.031641p

W2 = O.546875p ‘ = O.023071p

2 is takn to be eque.1 to 0.1.where p For ~ = 0.3,

W. = O.0329@P

For n = 3 (fig. 7), the finite-diffez%nceequations, after the
boundaqy conditions are employed, becoEE

‘o -32w1+&2i-4w3=p’

-&o+2~1- 16w2-8w3+6w4=P’

2W0 -16wl+22w2 +4w3-l~+2w5 =p’
1

W. ‘&1+4w2+l~3-l&4+~~=p’
[

3w1-8w2-

2W2+2W3-

(70)

.



The solutions of equation (70) em:

W. = 50246672p’= o.ok3722p

wl = 4-597633P‘ = o.038314p

W2 = 4.031.250p”’= o.033594p

W3 = 2.735207Pt= 0J322793P

% = 2.k02367p’= 0.020020P

‘5 = 1.439164yt= o.oI@93p

if P* is assumed.to be 0.1. H IL is assumed

w~ = o.044q&

to be 0.3, the answeris

Timoshenko gims the exaot Wue Of wo for a simply suPPortid
SqUaIW plate (referenoe 27) as:

!llhereforethe oolution
by 0.23 percent. This
engineering purposes.

Uo = o.0443p

by finiteUfferenoes with n = 3 is in error
solution is seen to be suffioiently acoura~ for
The agreement of the fimlte-f erence approxi-

mation wi~ ‘%hemore exact results of Timoshenlm is sufficiently close
to encourage a@30atim of the finite-dtfferenoe approximation to the
prdlems with Mge deflections.

The 1=~ ~ef lections problem, n = 2.- After the boundary condition
are inserted, the two sets of flnite-difference equations are: .

20F0 - 32F~ +

-8F0 + 24F1 -

8F2+M?3=Iq3

16F2 - 6 .6324%F3 + 6 .632456F4

!2F0- 16F1 + 20F2 + 4.632456F3 -13 .2649=4

-2F0 - 4F1 + kF2 - 0.632456F3+ 2a632456F4=

FO -.6F2 + 2.316228F3+ 1.367544F4= S2

(71)
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\
,

[ 1 -r=‘2106(~’‘Po’‘270’)‘1 -20 + 21.6(~* + pot + 7.1)W.

‘1
+ (8 + 21..670 ~)w2 = p~

-(8 + 10.8P1’)W0 + [24 +21.6(~t + B1’ +71’)]w1 I

1

(72)

~6 +2 L6(q’ +7~’)]w2 =P’

ZRro-
[‘-6+1008(~’+‘2’CIW1+[i +21*6(%’+‘2: +72’)‘2 =“U

It is to be noted that the terns of the left-hsxd side of equation (71
do not changeif the assuredvaluesof K sml S are changed.
Equation(~) .cm be solmd uniquely,therefore,in termsof K’s
and S‘s. The given, auxillary, and f- matrices obtained by Crout’s
xethod sre given in tables 1, 2, and 3, respmtively, More sigdfican%
figures than required axe used to ensure good results.

The solutions of equation (71) em as f olLows:

F()= -0.04870~ -0 .265696K1- 0.~5~ -0 .304@lS1 - 0.30952~2

F1 = -O.~O~ - 0 .307363K1 - 0 .23~52~ - 0 .262447S1 - 0 .288692S2

F2 = -o.103085~ -0 .3U96ZK1 -0 .2210~ -0 .1628@xi1~-0 .317642s2

3?3. -o .1899371Q -0 .506498K1 - o.31656~ -0 .;53249s1 -0 .u662~
●

F4 = -o.09496~ - 0.316561JK1 - o.26907~ - 0.0633-1 - 0.221593s2

/

For a nmmrical example of tie computation, let

(73)

.

. .

P = 100

1?’= 0.0421875p= 4.zL8750
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it is estimted that

Wo = 1.135

‘Q . ~*7535

Wo

‘~ = 095775W()

The first trial values are

= 1.135‘o

‘1
= 0.855222

.
w2 = 0.655463

. These 9ahes are writt9n at the right-hand cmrners below * corre -

sped.ing net points. The fimite-ferenoe pattirns - used as given
in figure 4, md a, $, Y) wn+l - wnj mdthen Kand Sare
foundat the net points (fig.1.3).

~=P() .= -2(1.135000 -

As an exanple,

O. 855222) = + .559556

yo = 1.135000 -I-0.655463 - 2 x 0.855222= 0.080019

~ = (o.o&019)2 - (-0.559556)2= 4.306700

Shum..y, it is found that

K1 = -0.189997

~ = o.2@S66

‘1 = 2.368276

—-.‘2 = 1.373368
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IMmnequation (73} the values of F’s are obtah.ed as foXLows:

F. = -1.129866

F1 = -00977802

F2 = -0.780162

F3 = -0.689444

Fk = -0.424723

These values are substituted.in any one of the eqressions (equation (n))
as a cheek and then me recorded at the nst points, as in figure 13.
Similarly, the values of a’, P’, and. 7“ are recordmi below the
corresponding values of F .

Equation (72) can nuw be written and the given matrix is
.

‘o ‘1
Check
column

34.I.2277Z-k7.107213 8.98U42 4..2l87w 0.218750
-12.269024 36.930948 -20.3929004.2M750 8.487774
2.000om -19.40~58 28.313451 4.2M130 M J-23743

The check column oan be oltdned by using the f olLoWng relation:

Check column

-4+p’

The SLIDIof the el.emnts in a row should be equal to the valw of the
element of the same row in the check column. This yrocedure provides a
check for the substitutionmade in the given matrti.

.

5

.,

.

.

.
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The first approximation gives, therefore

WO = 1.u7078

%
= 0.&3225

W2 = 0.648u

A computation similar to tbs one ou~d ti the fcmegoing numerical
example gives

% = -0.293781

~ = -0.184U5

%’ 0.214841

S; = 2.299072

‘2 = 1.339974

As a second trial,assme

~ = ~-o.306700

q = $ -0.1Q3997

- 0.293781) = -O .3002kl

- o.l@mL5) = -0.187056

K2 = $0*221966 + 0“21484Q = o“2@@

S1 = $(2.368276+ 2.299072)= 20333673 -

tiL373368 + 1.339974)= 1.35667zS2=2

The resultsof the second, third, end fourth trials em shown
in flgwe 13. The correspondingassumed end &xrputed values of the
fourth triel m

.

.
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Assured computed

~ ~ -0.300446 -o.300w6

% -.~87407 -.187472

‘2 .218738 .zL8786

S1 2.337941 2.338531

‘2 1.360090 1.3@631

The first three values cbeckwlth
totJletWrd d8cimalplace, &u-e

‘o

‘1

‘2

one smother, and the results, comectw

= 1.1269

= 0.8502

= 0.6528

The lar@ -cleflectlons problem, n a 3.- Wbmniste.lmntobe
greaterthem 2, the sam procedureof computation as that in the case
ofn= 2 ie still valid. As en example, tbeaa8eof n=3 willbe
considered, when the square plate is subjected to a uniform pressure
of p = 100 ●

After usingthe boundary conditions, the two sets of clifference
equations (61)ad (62)are obtained. Equation(61)can be solvedin
terinsof K’s and S’S, and the results are gimn in table 4.

extrapolation:

WO = 1.1247

~ . oa8@l
W()

:.0.7932

~ = 0.5516

.

.

.
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w- = 095Q37
U()

~ = 0.3497

For a first trial, it Is amnmed that

WQ = 1.L24700

q = O.gggm.

W3 = 00620385

W4 = o* !%65U

W5 = 0.393308

Again these values are written at the right-hand corners below the
correspom3M.nnnet points● with the ccmputed -ues of c%, @, Y,
4W, and Lyw, the foUowing values are Obtaima:

~ = -0.061945

Kl = 4.052063

~ = -0.02k186

~ = -0.023043

K4 = 0.00M!52

q = 0.106245

S1 = 1.x2696

S2 = L2M38

S3 = 0.548700

By table 4 * values of F’s em founl to be

F. = -1.095495

F1 = -1.028996

.-

.



66

‘2 = -0.950923.

F3 = -().&J~59

F~ = -0.762520

F5 = -O.50576~
.

F6 = -0.675850

‘7
= -0.546620

F8 = +.239729

Ths valueEIof F ‘S are written at the left-hand corners below the
corresponding net points,and
computed.

When the values of u’,
equation (62) snd it h noted
given matiti of the equations
IMLtrixas in ta%ls 6, and the
final.matrixare

the Valuss of at, @t, and y’ are

P’, and yt m E@stj.tuted into
that p’ = 0.00833333p = 0.833333, w
is obtained as in table 5 and $he-auxiliary
solutions of equation (62) given by the

W* = L123384

Wz = o*gg8gs

W2 = 0.891465

‘3
= 0.620342

‘4 = 0.565591

‘5
= 0*390999

i
It mightbe pointedout here that the oheckoolmm of the given-mtrti
may be obtaizmd by a direct substitutionby us- the folluwing relations:

.

.

.-

.

1

—

.
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Check COhIIEL

P’

-1 + p’

++p’

2 x lo.8134?+p’

1X 10.@5S +P’

6 + 2L6(CZ6s + 76’) + p’

The V?dUBSof ~, Kl, ~, K3, ~, ~, S1, 92, ~ 93 =
found from the ccxHputeaTalues of W’S* T&w ~ valms of the K’s
and S’s first asswmd - thOSO txq@ed axe md as the tri~ vdws
for the seooti cyols, and soon. At Wexxlofthe MtriaJ-, the
foil.e ass-d and ccunputed val.~ S are obtalaed:

Assunk3a.

-0.061763

-.051947

-.024660

-.023377

.00L614

.106177

1.5z06

1.28M78

.546560

Cmputed

+)●061695

-.051@4

-.024799

-.023477

.001697

.106204

1.592078

1.2~&4
,

9546173

.
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Thesevaluescheck
deflectionsat the
place,are

.

with one another -&
Vsxious net points,

I?ACATN No. 1425 .

the fourth decimal place. The
accurate to * fourth decimal

.

W. = 1.MI’O

WI = 0.9995

‘2 = O**

‘3
= 0.6207

‘4
= 0.%60

‘5
= o ●3915

The results of varioua trials are shown in figure 15.

IumJixmIoIvME’I!EOD
.

I@en a more accurate result i.sneeded, the plate must be divided
● into a set of finer nets. The nmiber of simultaneous equations

increases as the nwnber of nets is increased. Jh order to avoid the
solution of simultsaeous equations, SouthwelJ 8s relaxation method
~ be used. The so-called relaxation method is essentially a clever
scheme for guessing the solutian of a system of difference equations.
A brief description of the method and a numri.cal exsmple, tlm small-
deflection problem of a sq- plate, are given h appendix A.

The solution of the general case of the Urrge-cleflection problems
of rectanguMr plates by the relaxation nwthod has been sttiied by Green
and Southmld. and their mthod was outlined previous~. Green and
Southwll worked with the three complicated equilibrium equations in
terms of the displacements u and. v and the deflection w. Hawever,
it is satisfactory to use the two much simpler equations in terns of the
stress function F and the deflection w.

The fundamnta3 differential eq~tions (1) and (2) can be rewritten
as follows:

.. &=k (74)
.

v%=lo.8p+ lo.8k’ (75)
.
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. where

in applytig the relsmtlm method, as usual, the dmdn of the problem
to le solved is first &awn, and the net points chosen. Shoe there
are two stmltaneous equations to be solved, two sheets of paper g be
used, one for ‘F ad one for w. A set of solutions of 1? @ w are
guessed and are recorded m the F- end w-p-s, respectively.

By starting from the assured values of w, K oan be computed .
without difflmiL& ● Equation (74) is then a Mmear cliff erential equation
for F, and the liharmnic relaxation pattarn ~ he used. After the
residues at each point have been reduoed to ihe desired extant, the

●
new values of F w be substituted into e Wtion (75)end it x be

1solvedby the relaxationmethod. Equation m) leadsto a ra~r
complicatedrelaxationpatternfor w. h aotualmngmtations the
Mharmcmic patternmay be used,the assmmd valuesof w being usedfor.
the computation of k‘. By ~ans of the relaxation prooess, the re6iduss
at an points exe reduoed somewhat. New v&Lms of k‘ are conputed
and the residues are then oorreoted. The relaxation operation is applie~ ‘
~ ntil the values of w are deterndned to the desired accuracy.
The average values of the -W K’s and S’s - the orQinalJy assu5Ed
oms are now *lsedin the second oycle. The oyoles - now repated until
the final resuits have the desired accuracy.

In general, the boundary conditions for F are usually ~ficul.t
to -e. It is possible, huwever, to solve the boundary values of F
in terms of its values for intirior mtits. TIM boundam values of F
W fmm t- to t= as the interi& values
is ratbr complicated, but it oan be handled.

In the case of a square plate with given
boundary conditions as given by equation (49)
advantage. Equation (74) can be writtinas

V%=k
1

c-. 950 operation

ed~ dis@aoements, the
may be used to some

(76) “

@F=T

_f
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and the boundaryconditionsare givenby

NACA TN MO. 1425

m usingthis

To$i + =1, J +.. S-I-2T +T =Si
m-l,i rn,i

m
2

x( )
2

= (I - K)(AZ)2 n=o ‘n, i - ‘n-1, i

1

f Omll. not only are

=0

(77)

/

the bomdary conditions much easier to
handle.‘but slso tim relaxation pattexm is s-hpMfied frcm the tiharmonic
@p Ii)the hermonic type. The &@Lification- is obtained at the
e~nse of introducing one more equation into the system and therefore
considering one more ylane. !17he results o%tahed are given in figure 16.

DISCUSSION OF RESUUIS
“

The benitlngproblem
with tlm edges prevented
to rotate about them, is
The difference equations

of a square plate under unifomn nornml pressme,
from displacements along the supports but free
studied by the finite-dtiference approximations.
- solved by the method of SUC@SSive appl?oXi-

mation and %y th; relaxation method. -The computation starts with–-n = 1

to n= 33 h which case the plate is divided tito 36 square
Y

ts with

25 imer points. The maximum normal pressure calculated Is ‘% = 250*

After thevaluesofwand F have
can he fotmd %y the f oU.uwhg relations:

~*=?2=tzi&=
x iy2 (AZ)2

, = #F %2F—=— =
aY &2 (AZ)2

been determirmd,

B?

Eh4

the stresses

.

.—
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11
1= .—=x (L&r2(1 - @

A
=- (a + wp)

2(1 - ~2)(AZ)2

1
‘Y” = -2(1 - ($ + w)

~2)(AZ)2

where u: and a“ - the mmibrane stress A tie ex-me-fiber
bending E3-SS, respectiwly. The total stresses a m tie s~ of
the menibraneand %ending s-&esses at the seotlcm aml are maximm at
the extieme fiber of the plate. They exe

a= a’+YY

At the oenterof the squarepl-ati,~’ =
the stressesare

.

a
ax” = (Jy”=

2(1 - V)(AZ)2

P

= 2(1 - v)(A2)2

The deflections“at various potits deterndmd b the cases n = 1,
n = 2, eml n = 3 ers tabulated in tables 7 to 9. The center deflections
exe plotted against the normal pressure ratio ~ figure 12. The mmb~
stresses in the oenter of the plate amd at the centers of the edges ere
tdnil.ated in table 10 and axe plottid h f X 17. The bending S@
total stresses are tabulated in table U. and em plotted in figure 18.
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A study of the results shows that the
deflections Is 0.47 percent for n = 2 in

IJMA TN NO. i4.25 .

~ error In center
com~ison with n = 3 .

ml the maximum error in the center menibranestresses is 0.44 percent~

both values being conservative. PabBoth maxim errors occurred at — = 250-

Pa4
Eh4

The error in the center bending stresses is 2 percent at — = 2.2.5

Eh4
and is 0.83 percent at =4 . 250, bo~ ~~s ~~ unsafe. The error

Eh4
h the center extreme-fiber stresses is 1.6 percent at =4 = U*5

~4 Eh4
and 0.17 percent at ~, = 250, both values Ming safe. me emr ~

.

Eh’
the mmibmm stresses at the center of the

2 and ay ‘a2@h2 at(3X‘a2/Eh =4 = 12.5
*h4

=4
ax !a2/Eh2 exd uy ‘a2/%h2 at

4 = 250,
Eh

sides is 12 percent for both

and 8.9 percent for both

these values being unsafe.

One case of n = 4 has been solved by the re~tion mtQod.
I a“d

At 54 ‘o ‘Xo’az. =Yo . .
=100, it is found that — = 1.12w, = 4Jl!6,

h Eh2 Eh2

Goa2 axlIa2

= U.394, — =
Eh2 Eh2

for n = 3 are compared

center deflection has an
has an emor of 0.02 percent, the center”total-strews bas an error of
0.5 percent, and the mmbrane $ze sses Cx:a2m2 and ~ ‘a2/Eh2 have
the errors of 4.2 percent and 4.1 percent, reswctively, an val-ws
being unstie. Since in the present case only the center deflections euxi
stresses are to be investi.~ted.and the emors am stifioiently small
for engineering purposes, the case n = 3 is considered.to be satisfactory
for the final resuits.

ta2

9.688, a
aYl .

= 3.064. When the results
Eh2

with those for n = 4 at =4 .100, ~e

Eh4
error of 0.09 percent, the centir membrane stress

The center deflections obtahed by Way (reference 15) Iavy
(references 17 ad 19), and Head and Sechler (reference 23 are plotted~
in figure 19 for comparison with the present results. The center
~mbrane, bendfng, and total s-sees =e ylotted in figwe 20 to
corqyxrewith the results by kmy (references 17 snd 19). It is seen
from these results that ths center defI.ectionsare in good agreemmt with
test results from the California Instituti of Technology up to

d =MO. The theoretical results seem b be too low at higher pressures.
E#



It is interestingto note that the testresultsare reallyfor
clamped-edgeplates. The Olaqpingeffectseemsta be only lomal,and
at the oenterof the platethe plati%ehaws Justas thoughit Wem
simplys~portedj *t iSj m 2~~ is tie to ~~~ a~out its e-s ●

Fran the point of view of the engineer desi@ng the plati, the
total stresses at the oenter of the edges are still much larger in the
case of clamped edges than in all the other oases; henoe, a desi~ base~
on those sb’esses would give a ocmservative structure. The oenter
deflections, however, would give an idea of the nmguitude of the
wash%o~di~ of a boat bottom W- a seap~ iS ~- or ~ ●

CONCIDS1ONS

.

The following conclusions may be dra- frcmia theoretical analysis
of en initisJ2y fI-at,reatan@B.r plate with lamge deflections under
either nornml pressure or ootiined normal PS- W side thrust:

1. The large-deflection problems of rectangdar plates can be
solved approximately by the present mtkd with any boundary conditions

, and to any degree of accuraoy required. Althou@l it is still M.fficultj
the present mthod is, nevertheless, simpler t&zn the previously used
mthods for gi~ the same degree of aocuraoy.

.
2. For the squsxw plate considered, case n = 3 gives results of

good aomrcaoy, and the results - oonsistint with the existing theories.

4. The test resylts show that, at
(

=4 175 where ~~ is

)

~k >

nondimensional form for no= press- y ~ the existing solutions of

the clifferential equations give unsde’msults for center deflection
for a square plate. This conclusion perhaps suggests the range in
which the differential equations may be applied.

5. The present results” of the oenter deflections and mmbrane

Massachusetts EwtAtuti of Technology
Cambridge, lfass., Mach 4, I-946
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APPENDIX A

BRIEF DESCRIPTION OF RELAXATION MBIHOD

The idea behind the treatmmt by the re-tion mthod is
essentially just the ssme as that by Cross’ @thod. of mment distribution
in the case of bending of continuous beams. It seems, therefore,
easiest to explain the relaxation mthod by a comparison with the
mommt-distribution mthod, since the latter is well accepted and is
familiar to mst structural engineers.

The redundant been as shown in figure 21(a) is now exmdned. The
procedure for obtdning the redundant support moments by the mo~nt -
distribution method is well known. The ffist step in the mm3nt-
distribution analysis is to assure that the slope at each of the four
supports is zero. By this assumption, the end momnts at A, B,
C,and D can be found without clifficul~. The result is shown
In figure 21(b). Here tlm bom conditions at A and B are
satisfied, and the principle of continuity is also satisfied. The
oondition of equilibrtwa, however, is not satisfied, since there are
unbalanced mommts at B and C. The moment-distribution~thod now
offers a procedure to balance thsse unbalanced mamnts by a relaxatim
based on consistent defamations. The analysis %y the relaxation
method, h this case, would be essentially the s-. The momnts at A,
B, C, amd D are assum%l to satisfy the boundary conditions and the
condition of Conthlllity. The unbalanced moments at B and C are
then distributed by the relaxation based on consistent deformations.
The difference lies in that the relaxation mthod offers more freedom
in assuming the end momnts ad therefore could mah the convergence of
the operations more rapid. on the other hand, however, it beco~s
tif icult to asswm these values.

The method of momnt distributions applles only to redundant
structures, but the application of W re~ation ~fiod ex~fis ~ch
further, and its application to the partial ~erentiel eqwtions
has brought the study of engineering soiences tits a new era because
the bouniary conditi&s are now no longer &lfficult
to be satisfied.

The procedure cm be illustrated by a study of

theory of thin plates. Letttig w = ‘~, Where w‘

to be described and

the small-cleflection

andpsre the

.

(Al)
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In order to solve the problem, the domti to be ti=stigatid is &awn
and the net po~ts chosen. Values of w em as-d to satisfy the
boundary renditions and are then written adsaoent to eaoh paint of the
net. lhom *se vahms of w, the residuals Q at points (m,n)
exe computed and recorded aa follows:

%,n = ‘mjn - 8@m+l,n + wm..~,n+ ‘m,n+l +-w”
)m,n-1

+

.

+

( )2 ‘m+l,n+l + ‘m+l,n-l + ‘m-l,n+l + ‘m-l,n-l

(‘in+2,n
-1-w +W

m-2,n m,n+2 )+ ‘m,n-2

E(1 - IJ2)(AZ)4 . (=)

The residuals Q thus computed can be thought of as an unbalanced
force which must he removed from the system. Ifuw, instead of setting
up a s~cific iteration prooess, It is -rely observed that if the
defleotim at one point (m,n) is altered, all others remaining fixed,
the residuals wi~ change according to the Wttirn of figure 4, the
relaxation pattern. Eaoh ohange qf w at aqy point effeots a redistri-

bution of the residuals Q emong the net points, and suoh changes of w
are *sired as will move all the ubalanoed foroes to the boumWry.

For a simply supported plate, the deflation and bending momnts
Ue zero along the e@s. Equation (Al) cen be written

V&W)=p
.

Letting V% = M makes’ possible the fommilAtion of the
problem as follows:

as

boundmy-value

V%=p

}
M = O along the four edgesJ

+w=M

w= O along the four edges

J

.

_.

(A3)

..-

(A@)-
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The problems oan now be solved in two steps, that is, ffist, by
use of equation (A3) and.then by use of equaticxn(A4). This transfomnatio:
greatly reduoes the labor required.in applying the relaxation mthod
because the relaxation pattam of the harmonio or Iaplacian &pe is
muoh simpler than that of the bi&armonic t~e.

As an example, the tounda.ry-value pro%lem is solved when the plate
is a sqmre one. The process is considered with n = 4. From the
previous results as found from the calculations with n = 3, the values
of w at all the net points csn be assured. By equation (A4)

“ %,n = ‘m+l,n - hwm~+ ‘m-l)n + ‘m,n+l + ‘m,n-l (A5)
)

The values of ~,n are then
net point, anl the residuals

recorded at the right of the corresponding

%,n = %i-l,n + %-l,n + %,n+l + %,n-1. - %,n - ‘(1 - ~2)(AZ)4 ‘A6)

are computed and are reoorded at the left of these net points. The

results are shown in figures 22(a) and 22(b). For exemple,

%=

M4 .

Qo=

4wl - 4W0 = 4(0.0406) - 4(0.0437;

-0.0124

+W +W +W
‘2 3 5 7 - 4W4 ~

0.0377 + 0.0316 + 0.0231 + 0.0163 - 4(0.0295)

-0.0093

4M~-4Mo - 0.002637

4(-O.01L7)- 4(-0.0124)-0.002637

o.00Q163

“

.
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Q4 =% +M3 f-M5+M7 - 4244-0.002637

= -0.0106 - 0.0093 - 0.0078 - 0.0064 - 4(-0.0093) - 0.002637

= 0.001463

where 0.002637 = U(1 - P2)(AZ)4, since W2 = 0.1 d AZ = .i

The lsrgest counterbalanced M occurs in the vichity of the
greatest deviation of the assuuwl values from tie correct SdUtiOIlj

so changes are first made at this point. An examination of figure 22(b)
shows &t the greatest residual

a chsnge

(-+)*

where A
assuming

oGcurs at point 2. Since

2M4 -~ -0.002637 ‘ ,

of ~ would change ~ ly an amount equal to four times
Mathmmtically,

%=-’%

denotas the S3nountof chemge. Adding -0.0004 to ~ while
all the other values of M to remati unchanged gives

~ .0.0016, and Q2 is now equal to -0.000637. H a nomenclature
similer to that ti the method of momsnt distribution is used, this
process - be caUe& balanc3ng the unbalanced Q. A s~bol- (bl) iS put
at the side of
obsened that

the vdm to i.ndimt.e the first b&klC~. NOW it iS

Achar@of~

. by the relations

Q1=MO+* +M3-4M1-0*W2637

Q4=~+M3+M~+H7-~&-0*oo2637

with all the otkm M’s f-d WOuld CM Q1 and Q4
as follows:

.
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m4 = &f*

NOW, by ??eX the nets,

ml = 2(-0.0004) = +3.0008

44 = -0.0004

and.

NAM TN NO. 1425

Ql = o.00U63 - 0.0008= 0.000463

Q4 = 0.001463- 0.0004= o.oom63

These operations may be oalled carr@ng-over and le denoted by (cl).

The whole process oonsists of 20 balanoing and oarrying-over
operations by similar calmlationa. The detailed operations of the
computations are shown in figure 22(b). After the values of M‘E are
computed, the residuals are computed ae follows:

.,

. 1

The
The
The
The

For

%ll,n’=‘m+l,n + ‘m-~,n + ‘m,n+l + ‘m,n-l - 4wm,n - q ~
$

values of w my be determined by a similar series of calculations
detailed operations and computations are shown in f Igure 22(a) .
whole prooess consists of l.1 balsming @ oarrying-over operations
center deflection ratio thus obtained is, for v = O.316228Y

I

W. = o .0437gop

W()= 0.043790x :*
.

= o.0443p

which ohecks exactly with the exact analytical solution.
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For thin plates with clamped edges, the boundary

w= o

*’O’ +2%along x = -
2

$=0, alq y.. %

The relaxation pattern of the Mhwmoni c-@-pe mustbe
Althou@ the pattern is more complicated, the process
sexm.

79

conditions are

used in this case.
is essentially the

After the essential idea of the relaxation mthod is grasped, other
problems may be solved %y rather obvious steps. It =Y be notid -t
no quostion of convergence can ocour in the genfme.1 relaxation process
since no specific instructions are given. E, titer some steps, the
residuals get worse, the inteuigent computer ma&s chemges in the
opposite &Irection. These re=ks, however, oversiqlify tlm problem
so-what %ecause of two facts: ftist, the caputir nay become confused
as to whether the residuals are realJy better, and, secondJy, there is
always a question of whether a solution with zero residuals exists.
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TABLE 8.- DEELEOTIONEAT VARIOUS POINTS
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TABLE11.- EZTIUME-FIBER BEKOTI?GAND
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Figure13.- Method oftabulationofa , B , y , (w~l -wn), K, S,and F. n=2.
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